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Abstract

A modified MODFLOW code was developed to calculate the analytical sensitivities of both
the field parameters and the operational parameters using the automatic differentiation
system ADIFOR 3.0. The analytical sensitivities were then used as input parameters for
PEST to calculate estimates for the uncertainties. In addition, the manuscript details a
comparison between the analytical sensitivities and numerical estimates of the sensitivities as
calculated by using PEST, and presents a comparison between the estimates of the
uncertainties based on analytical sensitivities and numerically derived sensitivities.
Analytical calculations of the sensitivities are known to be more accurate than numerical
estimates, usually takes less time to compute, and the results of analytical computations are
independent of numerical assumptions such as the magnitude of the perturbation.



Introduction

Edward Lorenz conducted research at MIT by simulating weather patterns on the university’s
huge (in physical dimensions) computer about forty years ago. One winter day in 1961 he
decided to make a shortcut and punched a value of 0.506 on one of the input data cards
instead of 0.506127 he used in previous simulations. Something unexpected happened. He
noticed that the new simulation results dramatically diverged from the previous one. At the
beginning, Lorenz thought that the MIT computer had a malfunction. Then, after some
research, he discovered that the difference in the simulated weather pattern is due to rounding
up one of the initial condition parameters by one thousandth. That slight change in the initial
conditions produced a huge difference in the result.

Lorenz’s experiment discovered the phenomenon of sensitive dependence on initial
conditions, or the butterfly effect: the change brought by a butterfly moving its wings in
Shanghai on the weather in San Francisco. Since Lorenz’s experiment, scientists and
engineers have studied sensitivities of models with respect to boundary conditions,
management decisions, resource allocations, and discretizations of numerical models.

Uncertainties in modeling results are due to various factors, including the assumptions made
in the development of conceptual mathematical models used to describe the physical
phenomena to be modeled, the assumptions in numerical algorithms developers use to
convert mathematical models into numerical models, temporal and spatial discretization, and
errors in field measurements used for model calibration or validation. The goal of an
uncertainty analysis task is to quantify uncertainty in the outcome of the model under

consideration,

Both sensitivity and uncertainty analysis require accurate estimates of the derivatives of the
model output with respect to the uncertain parameters. This manuscript demonstrates the use
of an automatic differentiation utility to accurately and efficiently estimate analytical
derivatives of model output with respect to input parameters. These derivatives can be used
- for automatic model calibration, sensitivity analysis, and uncertainty analysis. The Modular
Three-Dimensional Finite-Difference Ground-Water Flow Model (MODFLOW) was used in
this paper to demonstrate how the methodology can be utilized in groundwater applications.

A new MODFLOW code was developed to analytically compute the derivatives of the
dependent variables with respect to the independent variables. The manuscript compares the
resulting analytical derivatives with the derivatives computed by the numerical method using
perturbation. The derivatives are used as input data to compute uncertainties more efficiently.

Sensitivity Analysis

Engineers have extensively relied on computer simulations for decision support. Model
output allows engineers to study and predict outcomes under various management scenarios
and alternatives. However, model predictions can be misleading if the underlying uncertainty
is not quantified. In the case of ground water, parameters used in the models can vary a few



orders of magnitude rendering model predictions uncertain. Sensitivity analysis can be a
valuable tool for engineers to examine the importance of parameter uncertainty during both
model calibration and evaluation of mode] predictions.

Scientists and engineers usually perform sensitivity analysis with respect to four types of
parameters: field parameters, parameters related to boundary conditions, decision parameters,
and parameters related to the numerical algorithm. Field parameters include a wide range of
parameters. Examples of field parameters for groundwater modeling include viscosity,
transmissivity, conductivity, dispersivity, density, heat capacity, chemical absorption, and
reaction rates. State variables include pressure, velocity, and concentration. Boundary
conditions parameters are state variables that are specified along the boundary of the area of
interest and include head, velocity, and concentration. Decision parameters include allocation
of resources to maximize or minimize system output, subject to given constrains, Examples
of decision parameters in groundwater modeling include pumping and injection rates, drain
elevation, drain conductance, etc. Optimization of such allocation results in maximum
utilization and preservation of the aquifer. This work presents, as an example, sensitivity of
an independent variable (pressure head in an aquifer system) with respect to two field
parameters (transmissivity and vertical conductivity), one boundary condition parameter
(specified head along a river), and one decision parameter (pumping rate of a well system).

To date, there are two main techniques available to conduct sensitivity analysis: the
analytical approach and the numerical approach. The analytical approach calculates the
value of the analytical derivative of 2 model output with respect to model parameters. The
numerical perturbation approach is based on calculating the derivatives by incrementally
varying the parameter values using small perturbations. Some of the available codes for
conducting sensitivity analysis by the perturbation method include the Model-Independent
Parameter Estimation code (PEST) (Doherty, 2002) and the Computer Code for Universal
Inverse Modeling (UCODE) (Poeter and Hill, 1998). For the effort described herein, we
elected to utilize PEST for sensitivity analysis using the numerical approach. Sensitivity
analysis using the analytical approach is preferable over numerical differentiation methods
because the resulting analytical derivatives are more accurate and efficient in terms of
computer resources needed to perform the calculation. In the current work, analytical
derivatives were obtained by utilizing an innovative automatic differentiation technique.

Automatic Differentiation

Code development for analytical derivatives is very difficult and tedious for complex
numerical models which involve thousands of lines of computer code. Examples of
manually developed analytical derivatives in computer codes include MODFLOW-PES
processes (Harbaugh et al., 2000) and the code developed by Mangarelli et al. (2002). A
more efficient alternative is Automatic Differentiation (AD). In the current work the
innovative approach of AD was found to be of great value for developing analytical
derivatives. AD is a technmique for augmenting modeling codes with partial derivative
computations. It exploits the fact that every code executes a sequence of elementary
arithmetic operations. Martins et al., (2000) and Griewank (2000) discuss the mathematical
and computational techniques used for general purpose AD computer programs. The



Automatic Differentiation of Fortran (ADIFOR 3.0) (Fagan and Carle, 2001) was selected for
use in this paper. This development tool automatically augments the original code with new
code for calculating partial derivatives of selected output variables with respect to a set of
input parameters. The technique and the resulting computer program are so flexible that the
user has full control of the number and size of the dependent and independent variables.
From the user's point of view, ADIFOR functions much like a compiler: the user designates
the source code to be differentiated, then ADIFOR reads and analyzes it, and finally,
ADIFOR writes out a new code that computes the partial derivatives in addition to the
original code.

In this effort we utilized ADIFOR on the popular groundwater flow modeling . code
MODFLOW. ADIFOR allowed us to calculate a wide range of partial derivatives of state
variables including head, discharge, and budget terms among others with respect to any input
parameter. Unlike the approach used by Harbaugh et al. (2000) in MODFLOW-PES where
analytical derivatives with respect to some of the boundary conditions and some of the
parameters could not be calculated, ADIFOR allowed us to examine the parameter structure

- by allowing the model to calculate the spatial variation of derivatives in space and time. To
demonstrate the utility of the approach a series of simple hypothetical tests were conducted
and compared to the numerical perturbation method.

When using ADIFOR to develop the analytical solution of the derivatives, the user specifies
for which dependent variables to calculate the derivatives and with respect to which
independent variables. Thus, we used the opportunity to develop a modified MODFLOW-88
code to compute the derivatives of the heads with respect to all of the independent variables,
including field parameters (vertical conductance, conductivities along columns,
conductivities along rows, and primary and secondary storage coefficients), boundary
conditions (head prescribed in boundary cells (general head boundary condition), recharge
rates, maximum evapotranspiration rate, evaporation extinction depth, river water heads,
river bed conductance, drain elevations, drain conductance, well pumping rates, reservoir
water heads, and reservoir conductance), and parameters of the numerical algorithm (grid’
spacing along rows, grid spacing along columns, and thickness of layers). It should be noted
that computing analytical derivatives of the independent variables with respect to grid
spacing is straight forward; it creates a challenge to compute such a derivative with the
perturbation method. This is because employing the perturbation method to compute
derivatives with respect to grid spacing requires distortion of the grid.

The authors performed a number of tests viz. nonlinear problems, complex combination of
boundary conditions, and ground water/surface water interaction problems. In some of these
tests, numerical derivatives deviate considerably when compared to the analytical derivatives
obtained through automatic differentiation. The issue of reliability of numerical derivatives
has been a recognized limitation in inverse modeling, sensitivity analysis, and uncertainty
analysis (see e.g. Doherty 2002, Hill 1998, Poeter and Hill1998). For illustration purposes
the next section details a groundwater simulation example having a simple homogeneous
domain, where the transmissivity or vertical conductance could be lumped into one
parameter. Overall, calculations of analytical derivatives were noticeably faster than



calculation of numerical derivatives by PEST. The cost saving in run time was considerably
higher for simulations of non-homogenous conditions.

Example

Figure 1 illustrates the first test problem, which consists of two isotropic and homogenous
confined aquifers that are separated by a leaky confining unit. The horizontal hydraulic
conductivity of the two aquifers is set at 10 ft/day while the vertical conductivity is set atl
ft/day. The upper aquifer receives recharge of 0.004 ft/day. Both the upper and lower
aquifers drain into a river whose bed resistance is 1000 ft*/day and having a water elevation
of 75 ft. The bottom aquifer contains two wells that pump at a rate of 35000 ft*/day. The
problem was discretized into 2 layers and 10 by 15 square cells of 500 ft side length. The
quasi 3-dimensional approach of MODFLOW (Mcdonald and Harbaugh 1988) was used to
represent leakage between the two aquifers through the semi-confining unit. Figure 2 shows
the resulting head distribution in the upper and lower aquifers.
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Figure 1. Hypothetical test problem showing the use of analytical derivatives approach.

Under the assumption that parameter uncertainty is the dominant source of uncertainty in the
above problem (hence ignoring any uncertainty in the conceptual model), the following
parameters can be identified as uncertain; transmissivities of the two aquifers, vertical
conductance, and conductance of the river bed of the confining unit as field parameters;
water level in the river and recharge as boundary conditions; pumping rate as a decision
parameter; and grid spacing as the analyst decision for computational grid spacing. For
demonstration purposes, this work elected to perform sensitivity and uncertainty analyses
with respect to transmissivity, vertical conductivity, water level at the river, and pumping
rate, with aquifer pressure heads as the dependent variable. Except for the dependency of the
pressure head with respect to the pumping rate, the problem is linear and the values of the
derivatives calculated accurately by numerical differentiation should be relatively close to the
values calculated analytically.



quifer

Figure 2 Head distribution and flow field in the upper and lower aquifers.

Despite the fact that the test problem is simple and predominantly linear, numerical
differentiation produced considerably different derivatives for different differentiation
methods and perturbation intervals. Figure 3 depicts the result of both analytical and
numerical calculations of the derivatives of head with respect to transmissivity, vertical
conductance, and pumping rate. The figure also illustrates the changes in the numerical
derivatives with the change in the perturbations (increments) used for the numerical
calculation. The authors change the example problem for the calculation of the derivatives of
aquifer head with respect to river stage by fixing the boundary head on the left side of Figure
1 to 100 ft. Otherwise, the derivatives of aquifer heads with respect to river stage are unity
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Figure 3 Comparison between analytical numerical derivatives using different
perturbations (increments) showing the reliability of the numerical derivative
calculations in a simple problem.
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Figure 4 Comparison between analytical and numerical derivatives using different
perturbations (increments) for boundary conditions.

over the entire domain. Figure 4 depicts the changes for the derivatives of aquifer heads with
respect to river head for both the analytical and numerical calculations. Both Figures 3 and 4
exhibit that the numerical derivatives vary considerably over the range of chosen
perturbations. However, the values of the numerical derivatives are close to the analytical
derivatives for a given range of perturbation.

Calculations of the analytical derivatives were noticeably faster than the calculations of the
numerical derivatives by PEST. The cost saving in run time was considerably higher when
the above problem was slightly modified by considering a non-homogenous hydraulic
conductivity field and requesting PEST and MODFLOW (with the analytical derivatives) to
estimate the derivatives of each head with respect to the transmissivity of each grid cell. The
analytical derivatives approach provided a considerable cost saving over PEST with respect
to runtime, where PEST required two orders of magnitude time than MODFLOW with
analytical derivatives.

Uncertainty Analysis

Users of computer models employ uncertainty analysis mainly for the following purposes:
examination of how much confidence one should have in the model prediction; study of the
effect of errors in field parameters, used as input data, on model calibration and verification;
investigation of the propagation of errors in the input data on the predicted results;
mprovement of model calibration with availability of additional field data; and decreasing
uncertainty of model results and obtain further calibration of the input parameters by
minimization of uncertainty-based error functions (inverse problem).

The uncertainty analysis methods can be grouped in four categories: respond surface or
statistical methods, fussy logic methods, cross validation methods, and minimization of a
generalized Baysian loss function methods. For the respond surface method, the analyst first
chooses a small subset of the system parameters using their "engineering judgment.“ In the
second step the analyst selects a perturbation pattern for the selected parameters from
experimental design theories. In the third step the analyst uses the perturbation pattern to
perform multiple code runs that provide new response (output) values. In the fourth step the
analyst employs simple functional forms to fit the response data to a multidimensional



responsc surface based on a pre-determined probabilistic distribution that simplifies the
original complexity of the model in question. In the fifth step the analyst utilizes
sophisticated statistical algorithms (e.g., moment matching, Monte Carlo) to estimate
statistical properties and uncertainty distributions of the responses.

For the minimization of a generalized Bayesian loss function the analyst solves an
optimization problem (minimization of a constrained Lagrangian function) of the residual
vector multiplies with some form of the covariance matrix. The optimization problem
consistently combines field measurements with model outputs to simultaneously obtain best
estimates for model parameters and reduce uncertainties in model outputs. This method
considers all model parameters; thus, it guarantees that no important effects are overlooked
by generating a full set of sensitivities. A full set means that the sensitivities with respect to
all parameters are computed, without making an a-priori judgment as to which one is
important.

To demonstrate the use of analytical derivatives in uncertainty analysis, the model described
in Figure 1 is used to predict total discharge to the river from both aquifers. The discharge is
estimated at 8000 fi3/day by MODFLOW. The modified MODFLOW is used to calculate
both the derivatives of head at observation points and the total discharge to the river. The
derivatives calculated using the modified MODFLOW are then fed to PEST to calculate the
uncertainty in predicted discharge to the river. PEST calculates upper and lower bounds of
the predicted discharge. The upper and lower bounds of the discharge are ~85500 fi3/day
and ~76300 fi3/day respectively. These bounds are estimated as the upper and lower critical
points at a predefined value of the objective function (Doherty 2002). The same uncertainty
calculations were performed using PEST numerical derivatives. Both methods produced
similar results. The advantage of using analytical derivatives was limited to the cost saving
in runtime and accuracy. For example, in the case of numerical derivatives, MODFLOW
needed to be modified to write the head and flux values with greater precision in order for
PEST to converge to the predefined value of the objective function. This issue was irrelevant
in the case of analytical derivatives supplied by the modified version of MODFLOW. The
analytical derivatives are calculated accurately by MODFLOW and provided to PEST
directly and the solution converged faster to the predefined value of the objective function.

Conclusion

The presented work illustrates the great promise offered by automatic differentiation for
analytically computing derivatives. The results of this work demonstrated that analytical
calculations are more accurate, take less time to compute, and their values are not functions
of the size of perturbations the analyst has chosen to use, or the method of differentiation. As
a result, automatic differentiation provide great benefits for both sensitivity and uncertainty
analysis especially in the case of problems with complex parameter structure, spatial and
temporal variations in parameters, and highly nonlinear problems.
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